Search results for "MSc: 37D30"

showing 2 items of 2 documents

Partially hyperbolic diffeomorphisms with a uniformly compact center foliation: the quotient dynamics

2016

We show that a partially hyperbolic$C^{1}$-diffeomorphism$f:M\rightarrow M$with a uniformly compact$f$-invariant center foliation${\mathcal{F}}^{c}$is dynamically coherent. Further, the induced homeomorphism$F:M/{\mathcal{F}}^{c}\rightarrow M/{\mathcal{F}}^{c}$on the quotient space of the center foliation has the shadowing property, i.e. for every${\it\epsilon}>0$there exists${\it\delta}>0$such that every${\it\delta}$-pseudo-orbit of center leaves is${\it\epsilon}$-shadowed by an orbit of center leaves. Although the shadowing orbit is not necessarily unique, we prove the density of periodic center leaves inside the chain recurrent set of the quotient dynamics. Other interesting proper…

010101 applied mathematicsPure mathematicsMSC: 37D30 37C15Applied MathematicsGeneral Mathematics010102 general mathematics[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]0101 mathematics01 natural sciencesQuotientMathematics
researchProduct

Anomalous partially hyperbolic diffeomorphisms I: dynamically coherent examples

2016

We build an example of a non-transitive, dynamically coherent partially hyperbolic diffeomorphism $f$ on a closed $3$-manifold with exponential growth in its fundamental group such that $f^n$ is not isotopic to the identity for all $n\neq 0$. This example contradicts a conjecture in \cite{HHU}. The main idea is to consider a well-understood time-$t$ map of a non-transitive Anosov flow and then carefully compose with a Dehn twist.

Pure mathematicsFundamental groupMathematics::Dynamical SystemsGeneral Mathematics[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]MSc: 37D30[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)01 natural sciencesIdentity (music)Exponential growth0103 physical sciencesFOS: MathematicsMathematics - Dynamical Systems0101 mathematicsMathematicsConjecture010102 general mathematicsClassificationMathematics::Geometric TopologyDehn twistFlow (mathematics)Partially hyperbolic diffeomorphisms010307 mathematical physicsDiffeomorphism
researchProduct